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ABSTRACT: Gas chromatography/mass spectrometry was used to analyze the pyrolytic byproducts from an
Army-unique propellant compound (AA2) that is composed of predominantly nitrocellulose and nitroglycerin.
Compounds produced by AA2 pyrolysis were compared to compounds detected in the gaseous effluent from AA2
incineration. The light permanent gases and most of the higher molecular weight byproducts produced by AA2 in-
cineration are replicated by laboratory pyrolysis on AA2. The reverse case also holds whereby 18 out of 24 high
molecular weight AA2 pyrolytic byproducts are found in the incinerator emissions. Poor matching, however, was
obtained between the two processes for the volatile, water-soluble species. None of these low molecular weight
compounds produced under pyrolytic conditions were detected in the AA2 incinerator samples, likely indicating
inefficient capture of these compounds from the effluent stream. Separate pyrolytic degradation of the individual
components of AA2 provides evidence that nearly all of the incomplete combustion products detected during incin-
eration originate not from the prevalent energetic ingredients but rather from the minor and trace additives in AA2.
In addition, pyrolysis successfully identified the AA2 components capable of surviving the incineration process in-
tact. This work illustrates the potential of bench-scale pyrolysis for predicting incineration behavior.
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Gas chromatography/mass spectrometry was used to
_analyze the pyrolytic byproducts from an Army-unique

“propellant compound {AA2) thatis composed of predominantly
nitrocellulose and nitroglycerin. Compounds produced by
AA2 pyrolysis were compared to compounds detected in the
gaseous effluent from AA2 incineration. The light
permanent gases and most of the higher molecular
weight byproducts produced by AA2 incineration are
replicated by laboratory pyrolysis on AA2. The reverse
case also holds whereby 18 out of 24 high molecular weight
AA2 pyrolytic byproducts are found in the incinerator
emissions. Poor matching, however, was obtained between
the two processes for the volatile, water-soluble species.
None of these low molecular weight compounds produced
under pyrolytic conditions were detected in the AA2
incinerator samples, likely indicating inefficient capture of
these compounds from the effluent stream. Separate
pyrolytic degradation of the individual components of AA2
provides evidence that nearly all of the incomplete
combustion products detected during incineration originate
not from the prevalent energetic ingredients but rather
from the minor and trace additives in AA2. In addition,
pyrolysis successfully identified the AA2 components capable
of surviving the incineration process intact. This work
illustrates the potential of bench-scale pyrolysis for predicting
incineration behavior.

Introduction

Munitions production by the armaments industry annually
generates approximately 1600 t of hazardous waste containing
explosives and propellants (1). Several military installations
have opted to use hazardous waste incinerators to dispose
of much of this energetic material (2). Although incineration
is a mature technology for the thermal destruction of
energetic materials and waste, fear of hazardous input feed
constituents and products of incomplete combustion (PIC)
potentially emitted by the incinerator limits public ac-
ceptance. Byproducts generated by incineration are a func-
tion of the chemical components of the waste feed; the
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molecular composition of the energetic compounds in the
waste; and the operating conditions such as waste feed rate,
temperature, and residence time (2). A bench-scale method
capable of predicting incineration performance could test
and optimize operational parameters off-line, identify the
level of effluent control required to capture and eliminate
recalcitrant components, and assess the potential of incin-
eration for new waste streams.

Numerous studies on high-temperature degradation of
organic compounds have recognized that, as compared to
oxygen-rich atmospheres or stoichiometric ratios of required
oxygen to waste, oxygen-deficient conditions produce the
most complex mixtures of PIC at the highest concentrations
(3—7). Most bench-scale laboratory experiments have studied
waste containing chlorinated compounds (3—14) because of
the potential creation of products far more toxic and
persistent than the input feed constituents. Results from these
experiments illustrate that, when compared to oxygen-rich
conditions, PIC generated under oxygen-deficient conditions
are more numerous, the molecular weight and the distribu-
tion increases, and the maximum yields and temperature
stability of the byproducts increase. Work by Dellinger and
co-workers on thermal degradation of municipal-type waste
in atmospheres of varying oxygen content shows that
byproducts generated under very low or no oxygen content
conditions best match the PIC generated during incineration
of these same wastes (15—18). It is postulated that, under
conditions of excess oxygen, all input constituents are
completely oxidized to innocuous light permanent gases. In
areas of low oxygen content known as “pyrolytic pockets”
(17), PIC are created. These areas are associated with poor
micromixing of oxygen, fuel, and waste (5, 6, 11, 18—20).
Replication of these pyrolytic pockets in the laboratory would
generate the same PIC as incineration of the waste under
worst-case conditions (12). It has also been shown that
destruction and removal efficiencies of recalcitrant organic
compounds in oxygen-deficient environments correlate well
with full-scale emission data (3). Several researchers have
concluded that laboratory pyrolysis can provide valuable
qualitative modeling of the incineration of municipal waste
(7, 16—18). Accurate quantitative prediction of incineration
emissions is unlikely, however, because of temporal fluctua-
tions in operating conditions and the complex dynamic
microenvironments present during incineration (16).

Pyrolysis combined with gas chromatography/mass spec-
trometry (GC/MS) is an analytical technique used to study
materials that are not amenable to direct injection into the
GC/MS such as polymers, paints, oils, microorganisms, and
soil (21). This research studies the ability of the pyrolysis
chamber to simulate the PIC evolving from an incinerator.
The GC/MS serves as amonitoring instrument to collect and
characterize the thermal degradation products from pyrolysis.
Data were collected from the pyrolysis of a munitions
propellant (AA2) as well as pyrolysis on each separate AA2
constituent. AA2 was also incinerated at a military installation,
and the emissions from the rotary kiln were analyzed. This
research qualitatively compares the emission data from full-
scale incineration of AA2 to the pyrolytic degradation
products of AA2.

Experimental Methods

Incineration. The incinerator system consists of a rotary kiln
12 ftlong and 5.5 ft in diameter followed by pollution control
equipment such as a secondary combustion chamber, an
evaporative cooler, and a baghouse for dust collection. An
aqueous slurry of the AA2 waste stream, containing ap-
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proximately 15% solids, is metered into the rotary kiln at a
feed rate of approximately 280 Ib of slurry/h. The kiln operates
atapproximately 550—750 °C, causing the water to evaporate
and the energetic materials to combust. The sampling
location for the collection probes was immediately down-
stream from the rotary kiln. Sampling at this point ensured
that any collected byproducts result from the initial incin-
eration process alone, without additional treatment and
scrubbing from the pollution control devices present further
downstream.

Sampling and Analysis for the Incineration Process. Four
separate sampling trains were used for emissions collection
including one for hydrogen cyanide (HCN), one for volatile
organic compounds (VOC), one for semivolatile organic
compounds (SVOC), and one for permanent gases. HCN was
collected and analyzed using NIOSH Method 7904 (22). The
continuous emissions monitor (CEM) analyses were com-
pleted in accordance with EPA Methods 3A (O; and CO,), 7E
(NOy, 10 (CO), and 25A (total hydrocarbons) (23—-26). Data
were collected from the CEM over the entire AA2 incineration
burn. Equipment problems precluded the use of data from
the total hydrocarbon CEM.

A volatile organic sampling train and collection method
as described in EPA Method 0030 (27) was used to collect
VOC. This train is a Tenax cartridge, an impinger for collection
of liquid condensate, and a Tenax/activated charcoal car-
tridge connected in series. Sampling from the rotary kiln
port used a flow rate of 1 L/min for 20 min. The Modified
Method 5 sampling train includes a particulate filter, an XAD
resin-filled trap, and an impinger for condensate to collect
SVOC following EPA Method 0010 (28). The SVOC sampling
time was 5 h, performed anisokinetically on the basis of
estimations of the gas velocity at the kiln port location.

All VOC and SVOC samples were extracted using EPA
Method 5041A (29) and EPA Method 0010 (28), respectively,
and then analyzed using a Saturn I GC/MS (Varian, Walnut
Creek, CA). For VOC analysis, a DB624 column (J & W
Scientific, Folsom, CA), 30 m x 0.25 mm x 1.4 gym film
thickness, was used. The mass scan for the ion trap used a
mass range of 60—260 amu. Although this choice of the lower
mass value eliminated many background interferences, it
also eliminated important daughter peaks from the mass
spectra, frequently making identification difficult. For SVOC
analysis, a DB17MS column (J & W Scientific), 30 m x 0.25
mm x 0.25 ym film thickness, was used. The mass scan for
SVOC analyses used a mass range of 50—430 amu. Further
details on the sampling and analysis of the incinerator effluent
stream are available elsewhere (30).

Laboratory Pyrolysis. The instrumentation for laboratory
pyrolysis consisted of a Pyroprobe 2000 (CDS, Oxford, PA)
interfaced directly onto an HP 5890 GC/5970 MS (Agilent
Technologies, Palo Alto, CA). Two different pyrolytic experi-
ments were performed on each sample to investigate the
entire range of potential byproducts. In configuration A, a
PoraPLOT Q column (ChromPack, Raritan, NJ}, 50 m x 0.32
mm i.d. x 10 zm film thickness, was used for separation of
the low molecular weight (MW) species. The GC oven
program began at 40 °C for 2 min, ramped to 200 °C at 10
°C/min, and stayed at 200 °C for 2 min. Configuration B used
an Agilent Technologies HP5MS column, 25 m x 0.20 mm
i.d. x 0.33 um film thickness, for separation of higher MW
species. The GC oven program began at 40 °C for 2 min,
ramped to 250 °C at 10 °C/min, and stayed at 250 °C for 7
min. Both configurations employed a splitless injection mode.

Preparation of the samples and the pyrolysis temperature
profile have been described in detail elsewhere (31). Ap-
proximately 2 mg of a sample was loaded into a quartz tube.
This prepared tube was placed inside a platinum wire coil
on the probe, which was inserted into the pyrolysis chamber.
The pyrolysis temperature program heated the sample from

100 to 900 °C at a rate of 20 °C/ms and held it at 900 °C for
100 s. The pyrolysis chamber was maintained at 150 °C. The
helium carrier gas swept the pyrolysate from the chamber
onto the GC column at a flow rate of 1 mL/min.

Samples. Propellants that contain two explosive ingre-
dients are termed double-base propellants (32). The double-
base propellant AA2 is composed of the following ingredients
in order of decreasing percentage: nitrocellulose (NC)
(approximately 50% of AA2 by weight), nitroglycerin (NG)
(40%), triacetin (3%), di-n-propyladipate (2%), 2-nitrodiphen-
ylamine (NDPA) (2%), and candelilla wax (0.1%). Samples of
AA2 were obtained directly from the input waste stream to
the incinerator. Samples of explosive grade 13.4%-nitrated
NC (Picatinny Arsenal, NJ), 1.0 mg/mL NG in acetonitrile
{(Radian Corporation, Austin, TX), triacetin (J. T. Baker,
Phillipsburg, NJ), di-n-propyladipate (Fisher, Pittsburgh, PA),
and NDPA and candelilla wax (Aldrich, Milwaukee, W1) were
also obtained for individual pyrolytic investigation and were
used as received.

Results

AA2 Incineration Background Samples. The incinerator
operated without an input waste feed for several hours prior
to AA2 incineration to provide background samples for VOC,
SVOC, HCN, and CEM analyses. In the background VOC and
SVOC samples (30), toluene was the major component
followed by benzene, xylene, and other alkylbenzenes. It has
been noted that toluene and benzene as well as other larger
polycyclic aromatic compounds can result from combustion
of natural gas in a fuel-rich flame (33). Past history of this
incinerator includes the burning of dinitrotoluene (DNT),
which could also be a source of aromatics from deposition
of byproducts on interior surfaces of the kiln.

HCN was not detected in the background samples. The
concentration levels for the light gases measured by CEM
over the background period proved to be relatively constant
at 13.5% O,, 3.8% CO,, 50 ppm NO;, and 10 ppm CO.

VOC from the Incineration of AA2. Analysis of the AA2
VOC adsorbent trap detected primarily the background peaks
benzene, toluene, and xylene but also observed VOC PIC
generated by AA2 incineration including benzofuran, ben-
zonitrile, and naphthalene (30). Several byproducts defy
identification because of a saturated mass spectrum. Analysis
of the VOC impinger detected the presence of the polar
byproducts 2,5-dihydro-1H-pyrrole, dimethylcyanamide,
2(5H)-furanone, 2-furancarboxaldehyde, benzaldehyde, 2-hy-
droxybenzaldehyde, and 2-nitrophenol (30). VOC samples
were collected in duplicate, and both contained identical
byproducts.

SVOC from the Incineration of AA2. Analysis of the SVOC
from incineration of AA2 proved to be richer in information
than VOC analysis. Successful identification of many of the
smaller peaks was achieved by a subsequent analysis of the
same sample using a quadrupole GC/MS with a lower
detection mass value of 10 amu (30). Table 1 lists the
compounds found in the extraction of the XAD resin. Four
undergraded AA2 components were detected: NG, triacetin,
di-n-propyladipate, and NDPA. All PIC detected are aromatic
species. Analysis of the extract of the particulate filter and
the condensate water uncovered no additional byproducts
(30). SVOC samples were also collected in duplicate and
contained the same products.

HCN and CEM Measurements during Incineration of
AA2. HCN was not found in any of the samples collected
during AA2 incineration. Unfortunately, the 5-day holding
time was exceeded before analysis, and several samples were
found to be more acidic than recommended (pH > 13).

The CEM data provide only broad conclusions. During
incineration of AA2, the levels of CO,, NO,, and CO increase
in abundance to 5.5%, 650 ppm, and 200 ppm, respectively,
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TABLE 1. SVOC Detected during Incineration of AA2

toluene hexanedioic acid, bis(1-methyl ethyl)
ester

naphthalene 4-hydroxy-4-methyl-2-pentanone

pheno! quinoxaline

benzaldehyde isoquinoline

benzofuran ethylbenzoic acid

benzonitrile triacetin

benzoxazole di-n-propyladipate

benzoquinone phenazine

hydroxybenzaldehyde carbazole

nitrobenzene bis{p-tert-butylphenyl)ether

pyridinecarbonitrile NDPA

2-nitrophenol 2-nitro-N-(4-nitrophenyl)benzamine
3-pheny!-2-propanol NG

TABLE 2. Identification of Low MW ic Byproducts from
AA2 As Shown in Figure 1 Pyrolytc Byp

peak identification peak identification

1 CO, NO, N2 12  methanol
2 methane 13 ethylene oxide/acetaldehyde
3 CO; 14 1-buten-3-yne
4 NO 15 butadiene
5 ethene 16 formic acid
6 ethane 17  acetonitrile
7 water 18 2-propenal
8 formaldehyde 19 furan
9 HCN 20 2-propenenitrile

10 propene 21 acetic acid

11 propyne 22 methyl formate

indicating that these light gases are incineration byproducts.
Similarly, O, levels decrease from background levels to 11%
since oxygen is consumed during combustion.

AA2 Pyrolysis—Low MW Byproducts. Since incineration
is performed on a slurried mixture of AA2 and water, pyrolysis
was initially performed on a slurried sample taken from the
incinerator input feed. A sample of this slurry was also dried
at room temperature and was pyrolyzed. Except for relative
changes in abundances, there were no qualitative differences
in the byproducts present in these two pyrolysates. The ease
of sample manipulation led to the use of dried AA2 for these
pyrolytic studies.

Figure 1 is a pyrogram of the light MW byproducts from
pyrolysis of AA2 using configuration A. Table 2 lists the peak
identifications of these byproducts from mass spectral
matching. Excellent matches were obtained for all peaks.
Peak 1is an unresolved combination of light permanent gases
suchas CO, NO, and N,. Peak 13 isidentified as either ethylene
oxide or acetaldehyde, which have nearly identical mass
spectra. Pyrolysis of AA2 using temperatures from 300 to 900
°C produced pyrograms similar to Figure 1. In addition,
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FIGURE 1. Pyrogram of low MW byproducts from pyrolysis of AA2 using configuration A.

40.0 420

altering the pyrolysis times from 10 to 100 s or utilizing sample
masses from 0.5 to 2.4 mg had little effect on the pyrogram
features; 900 °C and 100 s were chosen as the pyrolysis
temperature and time to maximize byproduct abundance
while minimizing carryover contamination between runs.

AA2 Pyrolysis—High MW Byproducts. Figure 2 is a
pyrogram of the higher MW pyrolytic byproducts separated
and analyzed using configuration B. Table 3 lists the peak
identifications for this pyrogram. The abundance of these
heavier pyrolytic byproducts is generally less than the
abundance of the light MW pyrolytic byproducts seen in
Figure 1. The compounds that are well-separated using
configuration A elute as unresolved peaks 1 and 2 and
contribute nearly 90% of the total peak area.

Four initial components of AA2 are noted in Table 3 as
compounds capable of vaporizing before thermally degrad-
ing: triacetin (peak 18), NG (peak 19), di-n-propyladipate
(peak 21), and NDPA (peak 24). All remaining peaks are
produced via pyrolytic mechanisms from AA2 components.
Most are aromatic compounds, and all have some form of
unsaturation.

Pyrolysis of Individual Components of AA2. Pyrolysis
was performed on six different components of AA2 to
determine the separate contributions of each. Since nearly
none of the pyrolytic byproducts of AA2 using configuration
A were observed in the incinerator VOC samples, configu-
ration B pyrolysis on the individual components of AA2 is
the primary focus. Pyrolysis of the separate components using
configurations A and B are presented elsewhere (31), and
only the major peaks are discussed below.

NC and NG Pyrolysis. NC is an energetic macromolecule
with multiple C-O-NO; groups, classifying it as a nitrate ester.
Substantial thermal breakdown into light gases is expected.
Pyrolysis of NC using configuration A results in a pyrogram
that is nearly identical to the pyrogram of AA2 shown in
Figure 1, including production of furan (31). A pyrogram
performed on NC using configuration B shows few identifi-
able peaks (31). The lighter MW gases coelute as a large peak
that interferes with the mass spectral data of the smaller
peaks atop it. Excellent spectral matching and identification
occur only for 2-furancarboxaldehyde, 2(5H)-furanone, and
2H-pyran-2-one.

NG is a highly energetic nitrate ester containing three
C-0-NO; groups per molecule. Similar to NC, pyrolysis using
configuration A produces the bulk of the pyrolytic byproducts
including formaldehyde, ethylene oxide, ethyl acetate, and
ethylenediamine. The configuration B pyrogram is dominated
by the light MW product peak, but a small NG peak is also
observed indicating that NG is volatile enough to escape the
pyrolysis chamber before degradation (31).

Triacetin Pyrolysis. A pyrogram of triacetin using con-
figuration B has three main features (31). Acetic acid is the
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FIGURE 2. Pyrogram of high MW byproducts from pyrolysis of AA2 using configuration B.
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TABLE 3. Identification of the High MW Pyrolytic Byproducts
from AA2 As Shown in Figure 2!' Pyrlytic Bre

peak identification poak identification
1 low molecularweight . 13  benzoxazole
gases ‘
2 acetic acid ’ 14 hydroxybenzaldehyde
3 2-butenal 15  2-nitrophenol
4 pyridine 16 naphthalene
5 2-furancarboxaldehyde 17 isoquinoline
6 styrene 18 triacetin
7 p-benzoquinone 19 NG
8 isocyanatobenzene 20 2-ethenylquinoline
9 benzaldehyde 21 di-n-propyladipate
10 phenol 22 phenazine
11 benzonitrile 23 carbazole
12  benzofuran 24 NDPA

major pyrolytic byproduct, a result of elimination from the

three ends of the triacetin molecule. A narrow peak consisting -

of the unresolved light permanent gases is present. Finally,
alarge triacetin peak is observed, indicating that it can quickly
vaporize upon rapid heating.

Di-n-propyladipate Pyrolysis. Due to similar structures,
di-n-propyladipate and triacetin have several common
features in their pyrograms (31). Prominent peaks for light
gases and acetic acid are present as well as smaller peaks of
benzene, toluene, styrene, indene, and naphthalene. Non-
aromatic pyrolytic byproducts are the five-membered ring
structures cyclopentanone and cyclopentenone. The major
feature in this pyrogram is the large, broad, tailing peak due
to the di-n-propyladipate that is not thermally decomposed.

Candelilla Wax Pyrolysis. Candelilla wax is a complex
mixture of long-chain hydrocarbons and long hydrocarbon
chain alcohols and esters. Pyrolysis of this wax gives a rich
characteristic pyrogram arising from the random scission of
the hydrocarbon chains (31). After the light gas peak, a series
of triplets is observed as expected (21). Each triplet is the
diene, alkene, and alkane for hydrocarbon chains of carbon
length 10—30, with the center alkene peak dominating.

NDPA Pyrolysis. The pyrogram of NDPA using config-
uration B is shown in Figure 3 with its structure in the inset.
Table 4 identifies the peaks numbered in Figure 3. NDPA
pyrolyzes into a large number of products that originate from
its diphenylamine structure, but the broad peak of NDPA
indicates that much of this compound also vaporizes onto
the analytical column.

Table 5 is a compilation of all incinerator emission products
from both VOC and SVOC samples. The first column is the
compound name, the second column identifies the incin-

24.0 26.0

erator sample containing this compound, and the last column
is the AA2 constituent that also produces this compound
when pyrolyzed. The origin of most of the incinerator
emissions can be deduced from these data.

Ten PIC are not generated by pyrolysis and therefore may
be the result of secondary heterogeneous combustion
interactions in the incinerator. Dimethylcyanamide, pyridi-
necarbonitrile, and 2,5-dihydro-1H-pyrrole are derived from
nitrogen-containing components of AA2 but are not observed
in any pyrolysis experiments on AA2, NC, NG, or NDPA.
2-Nitro-N-(4-nitrophenyl)benzamine is also not observed
during AA2 pyrolysis. Because of very similar structures, it
likely originates from reactions involving NDPA, although it
is not observed during NDPA pyrolysis. These four com-
pounds together with phenylpropenol, ethylbenzoic acid,
bis(p-tert-butylphenyl) ether, and the hexanedioic acid ester
are exceedingly minute. Methylnitrophenol is probably
derived from NDPA reactions since only this compound
generates nitrophenol during pyrolysis. 4-Hydroxy-4-methyl-
2-pentanone is the major incineration byproduct from AA2
that is not generated by pyrolysis. This compound is also
detected in the SVOC samples from the incineration of other
waste streams that contain NC and NG (30).

Xylene and nitrobenzene are examples of PIC that are not
seen in the pyrogram of AA2 yet are observed during the
pyrolysis of one of its minor constituents (candelilla waxand
NDPA, respectively). The small amount of these additives
present in a 2-mg sample of AA2 minimizes many of the
pyrolytic byproducts originating from these compounds.
Appreciable amounts of these byproducts, however, can
collectin the incineration samples since the cumulative mass
of an additive incinerated over a 1—5-h collection time
becomes substantial.

Benzaldehyde, hydroxybenzaldehyde, and benzoquinone
are incineration byproducts that are also produced by
pyrolysis of AA2 but are not produced pyrolytically by any
individual component of AA2. This indicates some secondary
interactions among AA2 components or byproducts under
high-temperature pyrolytic conditions, but the small relative
abundances of these byproducts prove these interactions to
be minimal.

On the basis of the relative abundance of the peaks, the
low MW pyrolysis byproducts are predicted to be the major
incineration PIC from AA2. Only the light permanent gases
from these samples, however, are detected in the incinerator
samples. These collection techniques are not optimized for
the collection of volatile, water-soluble species. Pyrolysis
experiments prior to incinerator emission sampling would
permit optimization of the collection trains and analytical
methods to collect and analyze for particular compounds.
HCN is also predicted to be a substantial byproduct from the
pyrolysis data but was not detected in any AA2 incineration
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FIGURE 3. Pyrogram of 1.6 mg of NDPA using configuration B. The structure of NDPA is shown in the inset.

TABLE 4. Identification of NDPA Pyrolytic Byproducts from
Figure 3

peak identification peak identification

1 light gases 15 dibenzofuran
2 benzene 16 diphenylamine
3 isocyanatobenzene 17 5H-indenol1,2-blpyridine
4 phenol 18 9H-pyrido[3,4-blindole
5 aniline . 19 phenazine
6 benzonitrile 20 4-(phenylamino)phenol
7 benzoxazole 21 carbazole
8 nitrobenzene 22 NDPA
9 2-nitrophenol 23 phenoxazine

10 azulene 24 3-nitrocarbazole

11 quinoxaline 25 4-dibenzofuranamine

12 isoquinoline 26 2,2"-biquinoline

13 biphenyl 27 9-phenyl-9H-carbazole

14  o-nitroaniline

sample due to problems noted earlier. In contrast, most of
the higher MW pyrolysis products in Table 3 are present in
the incineration samples.

Although NC is a major component of AA2, the config-
uration B pyrolysis data predict that it contributes very little
to the incineration byproducts collected by the SVOC train
and is not an emission concern because of its large molecular
weight. It can, however, produce toxic furan products. NG
is the other major component of AA2, yet it contributes even
fewer high MW byproducts. The presence of NG in the
pyrogram correctly predicts the presence of NG in incinera-
tion emissions. The ability of NG to vaporize and escape
rather than degrade pinpoints the need to monitor NG
degradation during secondary effluent treatment (which this
facility does). Pyrolysis also correctly predicts that triacetin,
di- n-propyladipate, and NDPA will be detected in the effluent
stream. NDPA pyrolytic byproducts contribute a majority of
the observed incinerator SVOC emissions. The distinctive
hydrocarbon series from the pyrolysis of candelilla wax is
not observed in any of the incinerator samples, which is not
surprising since candelilla wax is present in AA2 at less than
0.1%. Pyrolysis experiments can predict the components of
awaste that may survive the incineration process, determine
the PIC that can evolve from each component separately or
in combination with other species, and pinpoint the com-
ponents that contribute the most troublesome emissions. In
this case, although NC and NG compose 90% of AA2, the
behavior of the minor additives of AA2 dominates the SVOC
fraction of the incinerator byproducts, and one compound
(NDPA) was the primary source of most of the unwanted
byproducts. Future work will expand on collection and
analytical methods to provide comparative quantitative
examination of emission data from these thermal processes.
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TABLE 5. List of Incinerator Byproducts and the AA2
Component That Generates This Byproduct Pyrolytically*

incinerator AA2
compound sample component
benzene vT 1,2,3,4,5,6
toluene VI,VW  1,2,3,4,6
benzofuran VT, ST A4
benzonitrile VT, ST A5
naphthalene VT, ST A 4,6
dimethylcyanamide VW
2-furancarboxaldehyde VW A1
benzaldehyde VW,ST A
hydroxybenzaldehyde VW,ST A
2-nitrophenol VW,ST A,5
xylene VT 6
phenol ST A5
benzoxazole ST A5
nitrobenzene ST 5
4-hydroxy-4-methyl-2-pentanone ST
benzoquinone ST A
pyridinecarbonitrile ST
isoquinoline ST A5
ethylbenzoic acid ST
triacetin ST A 3
di-n-propyladipate ST A4
phenazine ST A5
carbazole ST A5
bis(p-tert-butylphenyl) ether ST
NDPA ST A5
2-nitro-N-(4-nitrophenyl)benzamine ST
3-phenyl-2-propanol ST
hexanedioic acid, bis(1-methylethyl) ST
ester
2,5-dihydro-1H-pyrrole VW
2(5H)-furanone vw 1
methylnitrophenol vw
NG ST A 2

*The incinerator sample column indicates where the sample was
detected according to the following notation: VT = VOC trap, VW =
VOC impinger, and ST= SVOC trap. The third column denotes the
starting material that also generated the same byproduct when
pyrolyzed using the following legend: A= AA2, 1=NC, 2=NG, 3=
triacetin, 4 = di-n-propyladipate, 5 = NDPA, and 6 = candelilla wax.
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